1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
bethanyuvj7342 edited this page 2025-04-07 11:37:05 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion criteria to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement learning to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial differentiating function is its support learning (RL) action, which was utilized to fine-tune the design's reactions beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adapt more successfully to user feedback and goals, eventually improving both significance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's equipped to break down complicated questions and factor through them in a detailed way. This directed thinking procedure allows the model to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, logical thinking and information analysis tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient inference by routing queries to the most relevant specialist "clusters." This approach permits the model to concentrate on various issue domains while maintaining overall effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging content, and evaluate models against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit increase, create a limitation boost demand and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid damaging material, and evaluate models against crucial safety criteria. You can implement precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The model detail page offers essential details about the model's abilities, prices structure, and implementation guidelines. You can discover detailed use guidelines, including sample API calls and code snippets for combination. The model supports different text generation tasks, consisting of material creation, code generation, and question answering, using its reinforcement discovering optimization and CoT thinking abilities. The page likewise includes deployment choices and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be triggered to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of instances (between 1-100). 6. For example type, select your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up sophisticated security and facilities settings, including virtual private cloud (VPC) networking, service role consents, and encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you might desire to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the implementation is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive interface where you can try out various triggers and adjust model specifications like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For instance, content for inference.

This is an outstanding method to explore the model's reasoning and text generation capabilities before incorporating it into your applications. The play area provides immediate feedback, assisting you comprehend how the design reacts to numerous inputs and letting you fine-tune your prompts for optimal outcomes.

You can rapidly evaluate the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform reasoning using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends a request to generate text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 practical techniques: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to assist you select the method that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser displays available models, with details like the provider name and model abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's suggested to evaluate the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the automatically produced name or produce a customized one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the variety of circumstances (default: 1). Selecting appropriate instance types and counts is important for expense and efficiency optimization. Monitor your release to change these as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The implementation process can take numerous minutes to complete.

    When release is complete, your endpoint status will alter to InService. At this moment, the design is ready to accept reasoning demands through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is complete, you can invoke the design utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To avoid undesirable charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments.
  5. In the Managed deployments section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, wakewiki.de Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious options utilizing AWS services and accelerated calculate. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the reasoning performance of large language models. In his free time, Vivek enjoys hiking, seeing films, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing services that assist consumers accelerate their AI journey and unlock business worth.